Friday, January 28, 2011

veg reflactance

Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. The reflectance is low in both the blue and red regions of the spectrum, due to absorption by chlorophyll for photosynthesis. It has a peak at the green region which gives rise to the green colour of vegetation. In the near infrared (NIR) region, the reflectance is much higher than that in the visible band due to the cellular structure in the leaves. Hence, vegetation can be identified by the high NIR but generally low visible reflectances. This property has been used in early reconnaisance missions during war times for "camouflage detection".

The shape of the reflectance spectrum can be used for identification of vegetation type. For example, the reflectance spectra of vegetation 1 and 2 in the above figures can be distinguished although they exhibit the generally characteristics of high NIR but low visible reflectances. Vegetation 1 has higher reflectance in the visible region but lower reflectance in the NIR region. For the same vegetation type, the reflectance spectrum also depends on other factors such as the leaf moisture content and health of the plants.

The reflectance of vegetation in the SWIR region (e.g. band 5 of Landsat TM and band 4 of SPOT 4 sensors) is more varied, depending on the types of plants and the plant's water content. Water has strong absorption bands around 1.45, 1.95 and 2.50 µm. Outside these absorption bands in the SWIR region, reflectance of leaves generally increases when leaf liquid water content decreases. This property can be used for identifying tree types and plant conditions from remote sensing images. The SWIR band can be used in detecting plant drought stress and delineating burnt areas and fire-affected vegetation. The SWIR band is also sensitive to the thermal radiation emitted by intense fires, and hence can be used to detect active fires, especially during night-time when the background interference from SWIR in reflected sunlight is absent.


Typical Reflectance Spectrum of Vegetation. The labelled arrows indicate the common wavelength bands used in optical remote sensing of vegetation: A: blue band, B: green band; C: red band; D: near IR band;

No comments:

Post a Comment